UK COURSE CORRECTED FUZE RESEARCH

Richard Beattie

Guns and Warheads Dept

UK Defence Evaluation & Research Agency

The Need For Competent Munitions

- Maximum range of artillery is increasing
- UK 155 mm artillery maximum range increased from 24 km to 35 km
- The Fall of Shot dispersion at these longer ranges is considerably greater than at current ranges
- The aims of Competent Munitions are to reduce the dispersion of current spin stabilised projectiles to retain artillery effectiveness at longer ranges

Increasing Artillery Dispersion

	RANGE (km)	Normalised Range Error	
Conventional Gun & Shell	25	1.0	
Conventional Gun & Base Bleed Shell	29	1.2	
Extended Range Gun & Base Bleed Shell	35+	2.3	

Competent Munitions Options

Possible alternatives:

GPS Auto-registration

Projectile Tracking System

1D (range only) correction

2D (range and line) correction

UK research concentrated on 1D course correction concept

Competent Munitions Research

- DERA has recently completed a 4 year Technology Demonstrator Programme to investigate a 1D Course Corrected Fuze (CCF) Concept
- 1D CCF is also being researched in the UK by Team STAR
- Other competent munitions options researched by ARDEC and ARL under complementary US programmes
- UK/US collaboration under TRDP MOU

CCF Concept of Operation

CCF Elements

Control mechanism - Single shot drag brake

Sensor - P(Y) code GPS receiver (antenna & oscillator)

Initialisation - Inductive transfer

Control algorithm - On-board software

Fuzing - HE and Carrier

All packaged within a standard NATO fuze intrusion envelope

Drag Brakes (1)

- Several options considered
- Extensive subsystem tests (spin rig, catapult & air gun)
- Gun firing tests conducted Dec 97 & June 98
- Demonstrated proof of concept on both L15 & L20
- 2.9 times drag achieved
- No Instability detected

Drag Brakes (2)

GPS Environmental Tests

- Series of subsystem hardware tests
 - Catapult
 - Gun firing trials
- Shoeburyness firing trial Feb 1999
 - First demonstration of GPS performance in spin-stabilised shell
- Yuma firing trial Aug 1999
 - Demonstration under maximum in-service firing conditions
 - US Charge M203A 8R
 - 14,500g setback acceleration for ~ 10 ms
 - Spin rate ~ 275 Hz
 - Muzzle velocity ~ 850 ms⁻¹

Test Vehicle for GPS Trials

GPS Oscillators

- Provides accurate time reference for GPS
- Gun firing issues
 - Survivability
 - Frequency shift
- GPS gun firing trials
 - All survived
 - All within tolerance
 - Proven at max charge

GPS Antenna

Mechanical

- Robust
- Fits in conical profile of fuze
- Novel annular slot design

Electrical

- Optimised for L1
- VSWR < 1.5 to 1
- -4.5dBiC average gain
- -3dBiC gain at 90°
- < 10° phase variation in roll plane

GPS Receiver

- Rockwell Collins PPSGPS Receiver
- GPS and solid state data recorder mounted in 4in x 2in diameter 'Soda Can'
- 12 Channel P(Y)-code
- Operating on GPS L1 Frequency (1575.42MHz)

GPS Results (1)

GPS Altitude & FOM Yuma Trials - Shot #8 (Charge 8)

GPS Results (2)

Initialisation

- Current requirements ~ 20 bits of data
- CCF requires GPS, target and trajectory ~ 25Kbits of data
- Initialisation is required within 2 seconds
- Current initialisation standards are not suitable for CCF
- Viability of inductive data transfer shown in hardware demonstration

Course Correction Algorithm

Packaging

Effects of CCF on Dispersion

♦ L15 - Uncorrected ■ L15 - Corrected

DERA TDP Summary

- The TDP successfully demonstrated the following subsystems required for a CCF at max charge conditions
 - Drag brake
 - GPS receiver (including oscillator and antenna)
- Technical risks are now well understood and have been significantly reduced
- Effectiveness modelling (based on trials data) predicts that a CCF can provide a significant increase in artillery performance

Team STAR

Team STAR Programme

- Team STAR has been researching 1D course correction for several years
- Team STAR has recently completed a successful 2 year Technology Demonstrator Programme
 - Product based
 - In parallel with and complementary to DERA TDP
 - culminated in successful demonstration of integrated 1D course correction hardware at YPG in August 1999

Future 1D CCF

- The DERA TDP demonstrated the viability of the concept at the subsystem level
- The Team STAR TDP demonstrated integration of 1D course correction hardware
- Building on these successes, a Course Corrected Fuze solution is now being taken forward to a future product by Team STAR

Points of Contact

DERA

Richard Beattie Tel. +44 1959 514375

rpbeattie@dera.gov.uk

Chris Langrish Tel. +44 1252 392429

cjlangrish@dera.gov.uk

TEAM STAR

David Wilson (TME) Tel. +44 1256 387410

david.wilson@uk.tme.thomson-csf.com

Rick Shale (RC) Tel. 319 295 5290

rbshale@collins.rockwell.com

